10CS56

Fifth Semester B.E. Degree Examination, Aug./Sept. 2020 Formal Languages and Automata Theory

Time: 3 hrs .
Max. Marks:100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Define following terms :
(i) Language
(ii) Alphabet
(iii) Power set
(iv) Powers of an alphabet
(v) Null string
(05 Marks)
b. Design a DFA for accepting strings of 0 's and 1 's containing two consecutive 0 's in it.
(05 Marks)
c. Design a DFA for accepting binary number which are divisible by 5 .
(05 Marks)
d. Design a DFA for accepting a sequence of a's and b's not ending with abb.
(05 Marks)
2 a. Convert the following NFA to DFA. [Refer Fig.Q2(a)]

Fig.Q2(a)
(07 Marks)
b. Define $\in-$ NFA and \in-closure.
(03 Marks)
c. Covert the following $\in-$ NFA to DFA. [Refer Fig.Q2(c)]

Fig.Q2(c)
(06 Marks)
d. What are the applications of finite automata and regular expressions?
(04 Marks)
3 a. State and prove pumping lemma of regular languages.
(05 Marks)
b. Prove that the language $L=\left\{w w^{R}: w \in\{a, b\} w^{R}\right.$ is reverse of $\left.w\right\}$ is not regular.
(05 Marks)
c. Prove that regular languages are closed under intersection.
(05 Marks)
d. Prove that regular languages are closed under homomorphism.
(05 Marks)
4 a. Define a context free grammar. Design a CFG which accepts all palindromes over a's and b's.
(06 Marks)
b. Define the following terms:
(i) Derivation tree
(ii) Yield of a tree
(iii) Leftmost derivation
(iv) Rightmost derivation
(04 Marks)
c. Design a CFG for accepting arithmetic expressions involving + and $*$ operators. Check if your CFG is an ambiguous grammar or not. If it is an ambiguous grammar, then get an unambiguous grammar for the same.
(10 Marks)

PART - B

5 a. Define a PDA and the languages accepted by it.
(05 Marks)
b. Design a NPDA for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}}: \mathrm{n} \geq 0\right\}$
c. Design an NPDA for the language

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{k}} \mathrm{c}^{\mathrm{m}}: \mathrm{k}=\mathrm{n}+\mathrm{m}, \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\}
$$

d. Convert the following CFG to PDA.

$$
\begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA} & \mathrm{~A} \rightarrow \mathrm{aS}|\mathrm{bAA}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bS}|\mathrm{aBB}| \mathrm{b}
\end{array}
$$

(05 Marks)
6 a. When a production becomes useless / nullable? What problem is faced when unit productions present in the grammar? Simplify the following CFG to CNF.

$$
\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \in \mid \mathrm{SS}
$$

(10 Marks)
b. Define pumping lemma of CFGs. Show that $a^{n} b^{n} c^{n}$ is not a CFL using the same. (05 Marks)
c. Prove that context free languages are not closed under intersection and complementation operations.
(05 Marks)
7 a. Define a Turing Machine. Design a TM for copying string of n 1's present in a tape to its right side. At the end of execution the number of 1 's should be 2 n in the tape.
b. Design a TM to accept any palindrome of a's and b's.
(10 Marks)
c. Design a TM that complements a given binary input.

- Dent
(02 Marks)
8 a. Define the diagonalization language. Show that for the language Ld, there is no turing machine exists.
(10 Marks)
b. Define recursive languages. With a diagram explain the relationship of recursive, RE and non RE languages.
(06 Marks)
c. What is post correspondence problem? Show that it is undecidable.

